

EGGER PerfectSense

Machining of EGGER PerfectSense lacquered boards

The high-quality EGGER PerfectSense lacquered boards with matt, high-gloss or matt-textured surfaces, impress with visual perfection and an appealing, natural-looking feel. Using multi-layer lacquer, the surfaces are well suited for upmarket and trend led furniture as they provide an exclusive and sophisticated finish. Available in a wide range of core boards and with multiple surface finishes, PerfectSense lacquered boards are versatile and flexible in their usage.

General machining guidelines

When machining EGGER PerfectSense lacquered boards, the reference values from the table for the selection of the cutting speed (v_c) and the tooth feed rate (f_z) should be observed, depending on the machining method.

Machining method	Cutting speed v _c m/s
Sawing	60 - 90
Hogging	60 - 80
Cutting	40 - 70
Boring	0.5 - 2.0

Machining method	Tooth feed rate f _z in mm
Sawing	0.05 - 0.12
Hogging	0.10 - 0.15
Cutting	0.40 - 0.60
Boring	0.05 - 0.15

These parameters are in relation to the tool diameter (D), number of teeth (Z), RPM (n) and feed speed (v_f) used on the processing machine. The right selection of these factors is responsible for a good machining result.

The following formulas apply to the calculation of cutting speed, tooth feed rate and feed speed:

v_c – Cutting speed [m/s]

- v_c = D π n / 60 1000
- D Tool diameter [mm]
- n RPM of tool [min⁻¹]

fz - Tooth feed rate [mm]

- $f_z = v_f \cdot 1000 / n \cdot z$
- $v_f Feed speed [m/min]$
- n RPM of tool [min⁻¹]
- z Number of teeth

EGGER PerfectSense

 v_f – Feed speed [m/min-1] $v_f = f_z \cdot n \cdot z / 1000$ f_z – Tooth feed rate [mm]

n - RPM of tool [min⁻¹]

z – Number of teeth

General tool

For optimum edge quality, tools with new or newly repaired cutting edges are recommended.

Cutting material

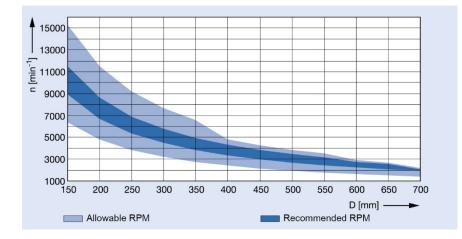
Basically, both tools with carbide cutting edges (HW) and diamond cutting edges (DP diamond polycrystalline) can be used. The use of tools with diamond cutting edges (DP) is recommended in order to extend the tool life at high cutting volume.

EGGER PerfectSense

Cutting the panels with circular sawblades

General note:

- Visible side (decorative side with foil) upwards
- Make sure that the sawblade protrudes correctly (see table)
- Adjust RPM and number of teeth to feed speed
- The use of a scoring sawblade is recommended for precise cuts on the bottom side of the panel


Depending on the sawblade protrusion, the entry and exit angle and thus the quality of the cutting edge change. If the top cutting edge becomes rough, set the sawblade higher. If the cut on the bottom side is rough, the sawblade must be set lower. In this way the most favorable height setting must be determined.

The following sawblade protrusions (Ü) must be set for sizing and panel sizing saws, depending on the diameter (D):

Circular sawblade diameter D [mm]	Protrusions Ü [mm]
250	
300	
350	ca. 5 - 10
400	
450	

Sawblades with a high number of teeth are generally recommended for good machining quality. For circular sawing, the recommended cutting speed v_c is 60 - 90 m/s.

EGGER PerfectSense

Recommended saw tooth shapes

FZ/TR (flat tooth/trapezoidal tooth)	HZ/DZ (hollow tooth/ inverted-V tooth)	TR/TR (trapezoidal tooth/ trapezoidal tooth)	HZFA/WZFA (bevelled hollow tooth/ alternate top bevel tooth)

Sizing sawblades

with the saw tooth shape hollow face/inverted V teeth (HZ/DZ) provide the best cutting results on machines without scoring unit. On machines with a scoring unit, the square/trapezoidal teeth (FZ/TR) sawblade shape also offers good cutting results with a higher tool life compared to HZ/DZ.

Sizing cut without pre-scoring Excellent

D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	z	ZF	sw °	ID
250	3.2	2.2	30	KNL	54	HZ/DZ	10	161300
303	3.2	2.2	30	KNL	68	HZ/DZ	10	161301
350	3.5	2.5	30	KNL	80	HZ/DZ	10	161302

Other dimensions available on request

Sizing cut with pre-scoring Premium

D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	z	ZF	Туре	sw °	ID
250	3.2	2.2	30	KNL	60	FZ/TR	UT	10	163002
250	3.2	2.2	30	KNL	80	FZ/TR		10	163003
300	3.2	2.2	30	KNL	72	FZ/TR	UT	10	163005
300	3.2	2.2	30	KNL	96	FZ/TR		10	163006
350	3.5	2.5	30	KNL	84	FZ/TR	UT	10	163007
350	3.5	2.5	30	KNL	108	FZ/TR		10	163008

EGGER PerfectSense

In order to create a work-friendly machining, WhisperCut circular sawblades with DP cutting material are recommended. WhisperCut circular sawblades produce up to 10 dB(A) less noise and can be used with standard splitting wedges on machines with scoring unit.

Sizing cut Excellent – WhisperCut

D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	z	ZF	sw °	ID
250	3.2	2.4	30	KNL	50	HZFA/WZFA	10	190697
303	3.2	2.4	30	KNL	60	HZFA/WZFA	10	190698
350	3.2	2.4	30	KNL	70	HZFA/WZFA	10	190699

EGGER PerfectSense

Panel sizing sawblades

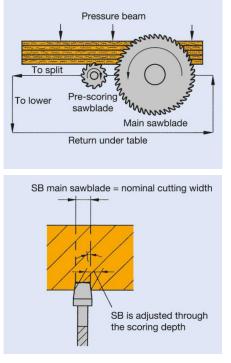
with saw tooth shape combinations such as square/trapezoidal teeth (FZ/TR) or trapezoidal/trapezoidal teeth (TR/TR) are recommended for this purpose. The Leitz RazorCut PLUS (TR/TR) saw type achieves the best cutting quality here.

Splitting individual panels and panel stacks – Premium

D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	z	ZF	sw °	ID
300	4.4	3.2	30	KNL	60	FZ/TR	15	163400
350	4.4	3.2	60	KNL	72	FZ/TR	15	163408
350	4.4	3.2	60	2/14/100	72	FZ/TR	15	163409
380	4.8	3.5	60	2/14/100 2/14/125	72	FZ/TR	15	163418
380	4.4	3.2	30	2/14/100 2/14/125	72	FZ/TR	15	163419

Other dimensions available on request

Splitting individual panels in finish cut quality Excellent - RazorCut PLUS


D [mm]	SB [mm]	TDI [mm]	BO [mm]	NLA [mm]	z	ZF	sw °	ID
300	4.4	3.2	30	KNL	60	TR/TR	15	161137
350	4.4	3.2	60	KNL	72	TR/TR	15	161149
350	4.4	3.2	60	2/14/100	72	TR/TR	15	161150
380	4.8	3.5	60	2/14/100 2/14/125	72	TR/TR	15	161159
380	4.4	3.2	30	2/14/100 2/14/125	72	TR/TR	15	161156

EGGER PerfectSense

Scoring sawblades

For EGGER PerfectSense lacquered boards, the use of a scoring unit is recommended to achieve a good cutting edge quality on the tooth exit side. The cutting width of the scoring sawblade must be set slightly larger than that of the main circular sawblade so that the exiting tooth of the main saw can no longer touch the cutting edge. Divided scoring circular sawblades are used on table and sizing saws.

All dimensions available on request

Panel sizing system with scoring unit and pressure device

Application diagram of conical scoring sawblade. When repairing the tools, it is recommended to sharpen the scoring saws with the main saws in a set.

EGGER PerfectSense

Jointing on table milling machine or throughfeed systems

In order to produce edges free of break-outs on the cover layers of the panel, jointing tools with alternate shear angles should be used. Diamond cutterheads such as Leitz WhisperCut with a shear angle of 30° or WhisperCut EdgeExpert with shear angle of 50° are recommended. The cutting thickness should be as low as possible and not exceed 2 mm.

For good cutting results, it is advantageous to use tools with high concentricity and balance quality which are achieved by using centering adaptors such as hydraulic clamping systems, HSK holders or shrink-fit clamping systems.

Only tools marked "MAN" or "BG-Test" may be used when working with manual feed on table milling machines. Further-more, for safety reasons, the speed range specified on the tool must not be exceeded or fallen short of. The tools for manual feed may only be used when running against the feed.

Tool examples:

DP-jointing cutter WhisperCut

DP-jointing cutter with fixed tipping

DP-WhisperCut EdgeExpert

DP-jointing cutter EdgeExpert

The application parameters of the jointing cutters should be selected so that the tooth feed (f_z) is between 0.4 and 0.6 mm. The DP-WhisperCut version is recommended for perfect cutting results.

leitz

Processing recommendation

EGGER PerfectSense

Whis	perCut

Dimensions DxSBxBO	RPM n	No. of teeth	Feed speed v _f	ID, DP WhisperCut		Machine
[mm]	[min ⁻¹]	Z	[m/min]	LH	RH	
85x43x30	12,000	3	14 - 21	192209	192210	Ott
100x43x30	12,000	2	9 - 15	192082	192083	Stefani, Holz Her
100x43x30	12,000	2	9 - 15	192233	192234	Hebrock, EBM
100x43x30	12,000	3	14 - 21	192088	192088	Biesse
100x43x30	12,000	3	14 - 21	090885	090886	Brandt
125x32x30	9,000	3	11 - 17	192092	192093	IMA
125x43x30	9,000	3	11 - 17	075627	075627	Homag, Biesse
125x43x30	9,000	3	11 - 17	192094	192095	IMA

Other dimensions available on request

WhisperCut EdgeExpert

Dimensions DxSBxBO	RPM n	No. of teeth	Feed speed v _f	ID, DP WhisperCut		Machine
[mm]	[min ⁻¹]	Z	Z [m/min] LH		RH	
125x43x30	12,000	3	11 - 17	192249	192249	Biesse, Homag
125x63x30	12,000	3	11 - 17	192250	192250	Biesse
125x43x30	12,000	3	11 - 17	192251	192252	IMA
125x63x30	12,000	3	11 - 17	192301	192302	IMA

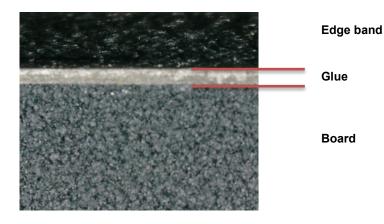
EGGER PerfectSense

Hoggers for throughfeed machines

Diamond compact hoggers, which generate little friction and cutting pressure, are recommended. The Leitz Diamaster DT Premium type mounted on a hydraulic clamping element is particularly suitable for maximum radial and axial runout and excellent machining quality and long tool life. The cutting speed (v_c) is 80 m/s at the usual speed (n) 6000 min⁻¹ and diameter (D) 250 mm. The application parameters and the number of teeth of the hoggers should be selected so that the tooth feed (f_z) is between 0.10 - 0.15 mm.

Dimensions	RPM n	No. of teeth	Feed speed	ID, DT P	Premium	
DxSBxBO [mm]	[min ⁻¹]	Z	v _f [m/min]	LH	RH	
250x10x60	6,000	24	17 - 23	190410	190411	
250x10x60	6,000	36	24 - 33	190418	190419	
250x10x60	6,000	48	30 - 43	190426	190427	
250x10x60	6,000	60	38 - 55	190434	190435	

Leitz DT Premium hogger


EGGER PerfectSense

Edge finishing on edge banding machines

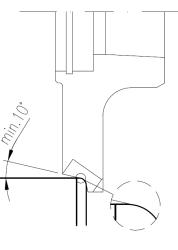
Radii cutters and scrapers on edge banding machines must be set so that the tools do not cause damage to the surface.

Adjustment

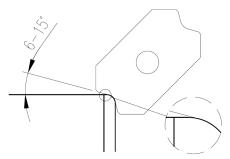
Correct adjustment

False adjustment - scraper 0.1 mm to deep adjusted

Edge band Glue Surface damage – visual and functional defects

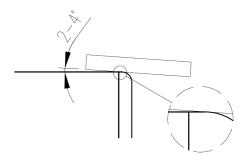

Board

EGGER PerfectSense


Radii cutter/ bevel cutter

Radii cutters should have a profile relief of at least 10°. The setting of the radii and bevel cutters must be selected so that there is no contact with the surface.

Profile scrapers


Profile scrapers are equipped with a profile relief and can easily be used for finishing the EGGER PerfectSense lacquered boards with exact adjustment. In order to avoid possible damage to the surface, scrapers with a larger profile relief of up to 15 degree are recommended.

Flat scrapers

Flat scrapers should preferably have an inclination of 2-4° from the edge to the plate so as not to touch the surface.

All dimensions available on request

EGGER PerfectSense

Groove processing

For groove processing, tools with a high number of teeth should preferably be selected for optimum edge quality. The tooth feed rate (f_z) should be in the range of 0.03 - 0.06 mm when machining with feed (GLL).

Diameter D [mm]	RPM n [min ⁻¹]	No. of teeth Z	Feed speed v _f [m/min]
180	6,000	36	7 - 14
200	6,000	48	8 - 16

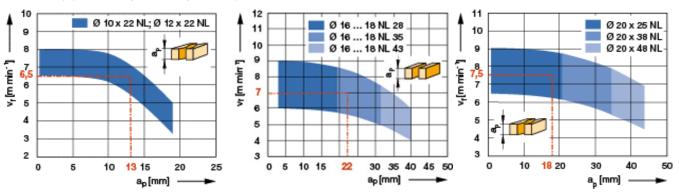
Other dimensions available on request

CNC Machining Centres

Spiral solid carbide cutters (VHW) or preferably diamond tipped (DP) routers are best suited for machining on router and machining centres.

Good workpiece clamping on the machine must be ensured. We recommend stable and rigid Leitz Thermo-Grip[®] shrink chucks for maximum concentricity, balance quality and perfect cutting quality. A good machining result can only be achieved with sufficient rigidity of the machine.

Recommended application data: RPM n = 18.000 - 24.000 min⁻¹

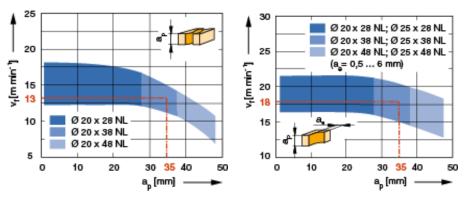


EGGER PerfectSense

Grooving and sizing

Router cutter Diamaster PRO

Feed rate (v_f) depending on cutting depth a_p:


D	GL	NL	S	I	D
[mm]	[mm]	[mm]	[mm]	LH	RH
10	70	22	12x40		091264
12	70	22	12x40		091265
12	90	28	20x50		191095
14	90	28	16x50		091267
16	90	28	16x50	091271	091270
16	100	28	25x60		091272
16	115	43	25x60	091276	091275
18	95	35	20x50		091278
18	105	43	20x60	091281	091280
20	100	28	25x60	091285	091284
20	95	35	20x60		091286
20	115	43	25x60		091290
20	120	48	25x60	091294	091293
20	130	58	25x60		191041

EGGER PerfectSense

Router cutter Diamaster QUATTRO

Feed rate (v_f) depending on cutting depth a_p:

D	GL	NL	S	ID	
[mm]	[mm]	[mm]	[mm]	LH	RH
20	90	28	20x50		091235
20	120	48	25x60	091246	091247
25	110	38	25x60		091251
25	120	48	25x60	091252	091253

Other dimensions or versions available on request



EGGER PerfectSense

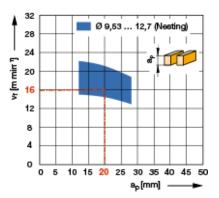
Splitting using the nesting method

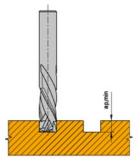
Production process with support panel

The workpiece is clamped as securely as possible on the machine table by means of a vacuum. The workpieces to be processed are usually supported by a thin MDF board, which is used as a "maxi-suction" and support panel for the machine grid table. The depth of the cutting tool is adjusted in order not to protrude the workpiece and cut into the support panel too much (max. 0.3 - 0.5 mm deeper).

Production process with rubber mat

A rubber mat is used as a support through which the workpiece is clamped by means of a vacuum. The cutting tools are set or adjusted to a depth of 0.1 mm protrusion in order not to cut into the rubber too much (max. 0.05 - 0.1 mm deeper). This mat is replaced every 1 - 2 years.




EGGER PerfectSense

Router cutter in Nesting design

Router cutter HW-solid Z 2+2

Feed rate (v_f) depending on the cutting depth a_p:

Minimum groove depth a_{p min} for tear-free cut

D [mm]	D [in]	GL [mm]	GL [in]	NL [mm]	NL [in]	S [mm]	S [in]	a _{p min} [mm]	DRI	ID
9.53	3/8"	76.2	3"	23	7/8"	9.53x40	3/8"x1 1/2"	5.5	RH	240518
9.53	3/8"	76.2	3"	28.6	1 1/8"	9.53x40	3/8"x1 1/2"	7	RH	240503
10		75		28		10x40		8	RH	240530
12.7	1/2"	76.2	3"	32	1 1/4"	12.7x40	1/2"x1 1/2"	5	RH	240504
12.7	1/2"	76.2	3"	32	1 1/4"	12.7x40	1/2"x1 1/2"	6	RH	240505
12.7	1/2"	88.9	3 1/2"	34.9	1 3/8"	12.7x40	1/2"x1 1/2"	6	RH	240506
12.7	1/2"	101.6	4"	43	1 5/8"	12.7x40	3/8"x1 5/8"	20	RH	240507

Other dimensions or versions available on request

EGGER PerfectSense

Router cutter Diamaster PRO DP Z 2+2

Feed rate (v_f) depending on the cutting depth a_p:

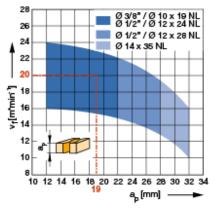
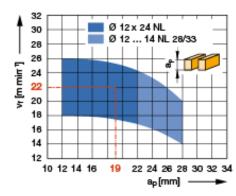


Table of optimal workpiece thicknesses

NL [mm]	Workpiece thickness [mm]	ID
19	9 - 16	191059
24	13 - 20 (22)	191060
28	19 - 25	191061
35	22 - 32	191101


Other dimensions or versions available on request

D [mm]	GL [mm]	NL [mm]	S [mm]	DRI	ID
10	65	19	10x40	RH	191059
12	70	24	12x42	RH	191060
12	75	28	12x42	RH	191061
14	90	35	16x50	RH	191101

Other dimensions or versions available on request

Router cutter Diamaster PRO³ DP Z 3+3

Feed rate (v_f) depending on the cutting depth a_p:

Table of optimal workpiece thicknesses

NL [mm]	Workpiece thickness [mm]	ID
19	9 - 16	191030
24	13 - 20 (22)	191031
28	19 - 25	191032
33	20 - 30	191033

EGGER PerfectSense

D [mm]	GL [mm]	NL [mm]	S [mm]	DRI	ID
12	65	19	12x42	RH	191030
12	70	24	12x42	RH	191031
12	75	28	12x42	RH	191032
14	90	33	16x50	RH	191033

Other dimensions or versions available on request

In order to find an optimal tool selection in connection with the machine, material and machining parameters, a consultation or recommendation from a Leitz application engineer is recommended.

Boring

For boring, carbide-tipped or solid carbide (VHW) twist drills, dowel drills and hinge boring bits are recommended. On CNC machining centres, it is recommended to use the hinge boring bits in the main spindle instead of in the drilling beam due to higher stability.

For all applications, the following tools can be used according to the tables below:

Dowel drill

RPM n [min ⁻¹]	3,000 - 6,000
Feed speed v _f [m/min]	0.5 - 2.0

Dowel drills HW-solid - Excellent

D	GL	L	NL	S	ID	
[mm]	[mm]	[mm]	[mm]	[mm]	LH	RH
3	70	68.5	16	10x45	033550	033551
5	70	68.5	35	10x27	033496	033497
8	70	68.5	35	10x27	033500	033501
10	70	68	35	10x27	033540	033541

leitz

Processing recommendation

EGGER PerfectSense

D	GL	L	NL	S	ID	
[mm]	[mm]	[mm]	[mm]	[mm]	LH	RH
5	70	68.5	35	10x30	033484	033485
5.1	70	68.5	35	10x30	033492	033493
8	70	68.5	35	10x30	033488	033489
10	70	68.5	35	10x30	033490	033491

Dowel drills HW-tipped – Premium

Other dimensions available on request

Through-hole boring bit

RPM n [min ⁻¹]	3,000 - 6,000
Feed speed v _f [m/min]	0.5 - 1,5

Through-hole drills HW-solid - Excellent

D	GL	NL	S	II	D
[mm]	[mm]	[mm]	[mm]	LH	RH
5	70	35	10x27	034100	034101
8	70	35	10x25	034104	034105
10	70	35	10x22	034114	034115

Through-hole drills HW-tipped – Premium

D	GL	NL	s	II	D
[mm]	[mm]	[mm]	[mm]	LH	RH
5	70	35	10x25	033964	033965
8	70	35	10x25	033966	033967

EGGER PerfectSense

Hinge boring bit

RPM n [min ⁻¹]	3,000 - 6,000
Feed speed v _f [m/min]	0.5 - 1.5

Hinge boring bits HW-solid

D	GL	L	S	I	D
[mm]	[mm]	[mm]	[mm]	LH	RH
15	70	68	10x26	034812	034813
20	70	68	10x26	034814	034815
25	70	68	10x26	034816	034817
30	70	68	10x26	034820	034821
35	70	68	10x26	034822	034823

Other dimensions available on request

Hinge boring bit HW-solid with the bevel

D	GL	L	S	I	D
[mm]	[mm]	[mm]	[mm]	LH	RH
15	70	68	10x26	130073401	130073400
20	70	68	10x26	130073403	130073402
25	70	68	10x26	130073405	130073404
30	70	68	10x26	130073409	130073408
35	70	68	10x26	130073411	130073410

EGGER PerfectSense

Performance times

Tool performance times are influenced by a variety of factors, so that no performance time statements or rights can be derived within the scope of this machining guideline. The information on the tools and machining parameters are recommended guide values. Machine or process constellations can lead to deviating parameters. An optimal adaptation of machine, tool and material as well as customer-specific requirements can only be carried out on site together with a Leitz application engineer. Due to the high quality requirements and special finish quality of the EGGER PerfectSense lacquered boards, a shortening of the tool life compared to conventionally coated panels from EGGER is expected with reference to the influencing factors mentioned above.

EGGER PerfectSense

Explanation of abbreviations

A	= dimension A	LH	 left hand rotation
a	 cutting thickness (radial) 		11 A. 1
a	= cutting depth (axial)	M	= metric thread
Ъ́ВМ	= dimension	MBM	 minimum order quantity
PL	= panel raising length	MC	 multi-purpose steel, coated
IPT	= panel raising depth	MD	= thickness of knife
L	 working length 	min ⁻¹	 revolutions per minute (RPM)
M	 number of knives 	MK .	= morse taper
S	 anti sound (low noise design) 	m min ⁻¹	 metres per minute
)	= overhang	m s ⁻¹	 metres per second
3		-	= RPM
		n	
DD	 thickness of shoulder 	n _{max} .	= maximum permissible RPM
EM	= note	NAL	= position of hub
EZ	= description	ND	= thickness of hub
Н	= tipping height	NH	= zero height
0	 bore diameter 	NL	= cutting length
		NLA	= pinhole dimensions
NC	 Computerized Numerical Control 	NT	= grooving depth
	= diameter	P	= profile
	= cutting circle diameter	POS	= cutter position
0	= zero diameter	PT	= profile depth
A		PG	
B	= outside Diameter = diameter of shoulder	PG	= profile group
-		041	and the second sec
FC	 Dust Flow Control (optimised chip clearance) 	QAL	 cutting material quality
GL	= number of links	_	
IK	= thickness	R	= radius
KN	 double keyway 	RD	= right hand twist
P	 polycrystalline diamond 	RH	 right hand rotation
RI	= rotation	RP	= radius of cutter
AB	= width of rebate	S	 shank dimension
AT	= depth of rebate	SB	= cutting width
AW	= bevel angle	SET	= set
LD	= flange diameter	SLB	= slotting width
	= tooth feed	SLL	= slotting length
	= effective tooth feed	SLT	= slotting depth
off		SP	
FW	= thread	ST	 tool steel Cobalt-basis cast alloys,
al vv		51	
	= total length	070	e.g. Stellit®
S	= Plunging edge	STO	= shank tolerance
		SW	= cutting angle
	= height		
С	 tungsten carbide, coated 	TD	 diameter of tool body
ID	 wood thickness (thickness of workpiece) 	TDI	 thickness of tool
L	= high-alloyed tool steel	TG	= pitch
S	 high-speed steel (HSS) 	TK	 reference diameter
W	= tungsten carbide (TCT)		
)	= ident number	UT	 cutting edges with irregular pitch
í	= insulation glazing	V	= number of spurs
		v _c	= cutting speed
BZ	= abbreviation	v	= feed speed
LH	= clamping height	ŇЕ	= packing unit
M	= edge breaker	VSB	= adjustment range
N		100	- adjuorment range
N NL	= single keyway	Mee	workniege meterial
TM1	 combination pinhole consists of 2/7/42 2/9/46,35 2/10/60 	WSS	 workpiece material
	211142 213140,33 2110/00	Z	 number of teeth
	= length	Z ZA	 number of teeth number of fingers
	-	_	
.D	= length	ZA	 number of fingers

In the present machining recommendation, corresponding parameters for the optimum machining of the designated materials are presented. The information on tools and machining parameters are standard values without any claim to completeness and general validity. Machine-related or process-related boundary conditions can lead to deviating application parameters. In individual cases, individual adjustments may be necessary. In particular, the respective manufacturer's specifications regarding the intended use of the machine, tools and material must be observed. No rights can be derived from this machining recommendation. For the solution of complex tasks, please contact our technical consultant.

The information is based on the current state of the art and was compiled with special care and in accordance to the best of our knowledge. Through continuous technical development and new standards and laws, technical changes can be made.